Structure-function correlation in airway smooth muscle adapted to different lengths.
نویسندگان
چکیده
Airway smooth muscle is able to adapt and maintain a nearly constant maximal force generation over a large length range. This implies that a fixed filament lattice such as that found in striated muscle may not exist in this tissue and that plastic remodeling of its contractile and cytoskeletal filaments may be involved in the process of length adaptation that optimizes contractile filament overlap. Here, we show that isometric force produced by airway smooth muscle is independent of muscle length over a twofold length change; cell cross-sectional area was inversely proportional to cell length, implying that the cell volume was conserved at different lengths; shortening velocity and myosin filament density varied similarly to length change: increased by 69.4% +/- 5.7 (SE) and 76.0% +/- 9.8, respectively, for a 100% increase in cell length. Muscle power output, ATPase rate, and myosin filament density also have the same dependence on muscle cell length: increased by 35.4% +/- 6.7, 34.6% +/- 3.4, and 35.6% +/- 10.6, respectively, for a 50% increase in cell length. The data can be explained by a model in which additional contractile units containing myosin filaments are formed and placed in series with existing contractile units when the muscle is adapted at a longer length.
منابع مشابه
'Sarcomeres' of smooth muscle: functional characteristics and ultrastructural evidence.
Smooth muscle cells line the walls of hollow organs and control the organ dimension and mechanical function by generating force and changing length. Although significant progress has been made in our understanding of the molecular mechanism of actomyosin interaction that produces sliding of actin (thin) and myosin (thick) filaments in smooth muscle, the sarcomeric structure akin to that in stri...
متن کاملSPHINGOMYELIN METABOLITES A S SECOND MESSENGERS IN AIRWAY SMOOTH MUSCL E CELL P ROLIFERATION
Sphingolipid metabolism was examined in guinea-pig airway smooth muscle cells stimulated by platelet-derived growth factor (PDGF) and 4β-phorbol 12- myristate 13-acetate (PMA), as mitogens and bradykinin (BK) as non-mitogen. Stimulation of the cells by PMA and PDGF for 60 min. at 37°C induced the following changes in sphingolipid metabolites: in cells prelabeled with PH] palmitate, a 1.2 f...
متن کاملComparative Study of Protective Effects of Salbutamol and Beclomethasone against Insulin Induced Airway Hyper-reactivity on Isolated Tracheal Smooth Muscle of Guinea Pig
Inhalational insulin was withdrawn from the market due to its potential to produce airway hyper-reactivity and bronchoconstriction. So the present study was designed to explore the acute effects of insulin on airway reactivity of guinea pigs and protective effects of salbutamol and beclomethasone against insulin induced airway hyper-responsiveness on isolated tracheal smooth muscle of guinea pi...
متن کاملComparative Study of Protective Effects of Salbutamol and Beclomethasone against Insulin Induced Airway Hyper-reactivity on Isolated Tracheal Smooth Muscle of Guinea Pig
Inhalational insulin was withdrawn from the market due to its potential to produce airway hyper-reactivity and bronchoconstriction. So the present study was designed to explore the acute effects of insulin on airway reactivity of guinea pigs and protective effects of salbutamol and beclomethasone against insulin induced airway hyper-responsiveness on isolated tracheal smooth muscle of guinea pi...
متن کاملPreventive effects of ipratropium and salbutamol against insulin induced tracheal smooth muscle contraction in guinea pig model
Inhalational insulin was withdrawn from the market due to its potential to produce airway hyper-reactivity and bronchoconstriction. So the present study was designed to explore the acute effects of insulin on airway reactivity of guinea pigs and protective effects of salbutamol and ipratropium against insulin induced airway hyper-responsiveness on isolated tracheal smooth muscle of guinea pig. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 285 2 شماره
صفحات -
تاریخ انتشار 2003